Transient paralysis of diaphragm by Botox; An hypothesis for preventing postlobectomy space

Abstract

Objective: Various techniques to reduce air space after pulmonary lobectomy have been an important concern in thoracic surgical practice. The aim of this study was to assess the effectiveness of Botulinum toxin A (BTX-A) injection into the diaphragm to reduce air space after right lower pulmonary lobectomy in an animal model.

Methods: Twelve male New Zealand rabbits were randomly allocated into two groups. All animals underwent right lower lobectomy. Then, normal saline of 0.1ml and 10 units of 0.1 ml Botulinum toxin type A were injected into the muscular part of the right hemidiaphragm in control (n=6) and BTX-A groups (n=6) respectively. Residual air space and diaphragmatic elevation were evaluated with chest X-ray pre- and postoperatively. Diaphragmatic elevation was measured as a distance in millimetre from the line connecting the 10th ribs to the midpoint of the right hemidiaphragm.

Results: The mean diaphragmatic elevation in BTX-A and control groups were 7.0±2.5 and 1.3±1.2 millimetres respectively. Diaphragmatic elevations were significantly higher in BTX-A group (p=0.0035).

Conclusion: Intraoperative Botulinum toxin type A injection may reduce postlobectomy spaces effectively via hemidiaphragmatic paralysis in rabbits. Further studies are needed to validate the safe use of Botulinum toxin type A in human beings.
Introduction

Lung lobectomies especially in the presence of fibrotic parenchymal disorders often leave a pleural space, and the remaining lobe or lobes may not be sufficient to fill the ipsilateral hemithorax. Residual air space and prolonged air leak after pulmonary lobectomies could cause serious complications such as bronchopleural fistula and empyema, requiring longer hospital stay and increased health costs. Although it is not universally accepted among thoracic surgeons, reducing postlobectomy space can be considered as a beneficial tool in preventing above-mentioned complications. In this respect, several manoeuvres can be used to attempt to decrease the size of the hemithorax including pleural tents, muscle flaps, pneumoperitoneum and phrenic nerve manipulation. (1-4).

Botulinum toxin type A is an extremely potent neurotoxin that interacts selectively with cholinergic neurons to inhibit the presynaptic release of the neurotransmitter acetylcholine (5). BTX-A is currently used for cosmetic and therapeutic goals for years, but to our knowledge, BTX-A has not been reported for the treatment of postlobectomy spaces in literature so far. Aim of the present study was to evaluate whether BTX-A can be effective for hemidiaphragmatic paralysis to prevent postlobectomy space in an animal model.

Material and methods

The protocol was approved by the Institutional Animal Care and Use Committee, and all animals were housed in the facilities of the Medical Faculty of Pamukkale University.

Animals

This study was carried out on twelve male New Zealand rabbits weighing between 1.5-2.0 kg. The animals were housed in wire bottom cages at 21-24°C room temperature with 12-hour light dark cycle. All animals were fed on standard laboratory diet and water but received only water for 12 h before surgery.
After an overnight fast, the rabbits were anesthetized by an intramuscular injection of ketamine, 35mg/kg and xylazine 5 mg/kg. After cardiac monitorization and endotracheal intubation, ventilation was maintained artificially (SAR-830 Rodent ventilator, Geneq Inc., Montreal, Canada).

Surgical procedure

The right chest wall was shaved, and the animal placed in a left side down position. A skin incision of 3-4 centimetre in length was made on the right anterolateral chest wall under aseptic conditions. The muscles in the 6th intercostal space were bluntly dissected to expose the right thoracic cavity. Right lower lobectomy was performed by ligation of bronchial artery, vein and bronchi with 2/0 silk suture. Then, animals were randomly allocated to two groups. Following right lower lobectomy, the animals in Group 1 (n=6) served as controls, and 0.1ml of 0.09% NaCl was injected into the medial and lateral muscular part of the right hemidiaphragm. The animals in Group 2 (n=6) were injected with 10 U (0, 1ml) BTX-A (BOTOX®, Allergan Pharmaceutical Ltd., Ireland) into the same region as in Group 1. All injections were made using a 26-gauge needle attached to a sterile 1 ml syringe. All animals had a 10F chest tube placed along the diaphragm and for the following two hours aspirated intermittently and chest tube was removed after having negative pressure. Both groups received single dose prophylactic antibiotic, and received diclofenac sodium for postoperative analgesia for 3 days.

Postoperative period

After the surgery, the rabbits were closely monitored for clinical evidence of pain (vocalisation, tachypnea, and restlessness) for seven days. Chest radiographs were taken for evaluation of diaphragmatic elevation, residual air space and complications. X-rays were taken during in inspiration. Since the onset of paralytic effect of Botulinum toxin type A begins in 2nd day, diaphragmatic elevation was evaluated radiographically in four consecutive
antero-posterior-chest radiographs (preoperatively, postoperatively, 3rd and 7th day). All the roentgenograms were taken at a 90 cm distance from the cassette while animals were in erect position. Diaphragmatic elevation was measured as a distance in millimetre from the line connecting the 10th ribs to the midpoint of the right hemidiaphram. Reversal of paralysis was observed by fluoroscopic examination of diaphragmatic movements.

Statistical analysis

The results are expressed as mean and ± standard deviation (SD). Differences among the groups were evaluated using Mann-Whitney U test. A P value of less than 0.05 was considered significant.

Results

There were no respiratory distress, prolonged air leak and any other complications requiring treatment in any group. Two animals in BTX-A group had about less than 10% increase in respiratory rate at the 3rd day and normalised at the 4th day (From about 70 to 80 breaths per minutes). There was not change in dietary patterns, and was not vocalisation and agitation in any animal.

Immediate postoperative and 3rd day roentgenograms revealed no complication such as hemothorax, mediastinal shift and atelectasis. Minimal residual air space in the base of right hemidiaphragm was detected in 3rd day roentgenograms of two rabbits in BTX-A and three rabbits in control groups. There was no residual air space In BTX-A group but was still remaining in 2 rabbits of control group in 7th day radiographs.

The mean preoperative and postoperative 7th day measurements of diaphragmatic heights are shown in Table 1 for both groups. The mean right hemidiaphragmatic elevations were 7.0±2.5 in BTX-A (Figure 1) and 1.3±1.2 in control (Figure 2) groups. Diaphragmatic elevations were significantly different (p=0.0035) between groups. Fluoroscopic examination of diaphragmatic movements revealed that paralyses reversed in 8-12 weeks.
Table 1. Diaphragmatic heights, and diaphragmatic elevation differences in both groups (mean ± SD).

<table>
<thead>
<tr>
<th></th>
<th>Control group</th>
<th>BTX-A group</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preop diaphragmatic heights (mm)</td>
<td>23.8 ± 5.4</td>
<td>24.8 ± 5.7</td>
<td>NS</td>
</tr>
<tr>
<td>Postop 7th day diaphragmatic heights (mm)</td>
<td>25.2 ± 4.4</td>
<td>31.8 ± 4.3</td>
<td>0.045</td>
</tr>
<tr>
<td>Elevation difference (mm)</td>
<td>1.3 ± 1.2*</td>
<td>7.0 ± 2.4</td>
<td>0.0035</td>
</tr>
</tbody>
</table>

Discussion

Although several techniques have been used for prevention of postlobectomy spaces up till now, the optimal method have not been described yet. Among these methods diaphragmatic elevation techniques have been used for this problem (1, 2). Phrenic nerve paralyses by crushing or local anaesthetic injection were one of the applied techniques for this purpose. Complication of permanent paralysis by crushing or ineffectiveness of short term paralysis by local anaesthetic injection reduces the usefulness of diaphragmatic elevation method. In general, diaphragmatic paralysis leads up to 20% loss of in pulmonary functions in adults with fully expanded normal lungs, in which elevated diaphragm will compress the expanded lung (6-8). However when a patient had a lobectomy, diaphragmatic paralysis will not collapse an expanded lung, but instead obliterates a dead space.

In several rabbit studies, botulinum toxin A has been used as 5 to 10 units for relaxation of different muscles (9, 10). In the study of Aoki, safety margin of BTX-A was determined as 13.9 ± 1.7 U/kg in mice (11). As the duration of act of BTX is dose dependent, 10 U of BTX injection per animal was preferred into the diaphragm, which was safe and provided sufficient paralysis (12).
Botulinum toxin type A has an average clinical onset of action approximately 12 to 72 hours after injection, with a peak effect at one week. Then, plateau effect has continued for 1 to 2 months (13). For that reason, we have taken the radiographs at 3rd day and 7th day for the evaluation of the diaphragmatic elevation. We detected significant diaphragmatic elevation in BTX-A group at 7th day. Fluoroscopic examination of diaphragmatic movements revealed that paralyses reversed in 8-12 weeks. Our results are generally in accordance with these studies. In this study, we showed that injection of BTX into the diaphragm has provided effective elevation for the prevention of postlobectomy spaces. This safety, effectiveness, easy applicability and reversibility seem to be the advantages of this method. The price of BTX-A is expensive but this method may reduce hospital stay and health costs, so it may be cost effective.

In conclusion, diaphragmatic BTX-A injection is an effective and safe method in preventing postlobectomy spaces in rabbits. Although, the direct application of the present findings to human beings is unwarranted, we think that the use of BTX-A may be considered as an useful tool in the clinical setting.

\textbf{Figure 1.} Postoperative 7th day chest radiograph of a rabbit of BTX-A group

\textbf{Figure 2.} Postoperative 7th day chest radiograph of a rabbit of control group

\textbf{References}

